Partitioning Sparse Graphs using the Second Eigenvector of their Graph Laplacian
نویسنده
چکیده
Partitioning a graph into three pieces, with two of them large and connected, and the third a small “separator” set, is useful for improving the performance of a number of combinatorial algorithms. This is done using the second eigenvector of a matrix defined solely in terms of the incidence matrix, called the graph Laplacian. For sparse graphs, the eigenvector can be efficiently computed using the Lanczos algorithm. This graph partitioning algorithm is extended to provide a complete hierarchical subdivision of the graph. The method has been implemented and numerical results obtained both for simple test problems and for several grid graphs.
منابع مشابه
Spectral Clustering by Recursive Partitioning
In this paper, we analyze the second eigenvector technique of spectral partitioning on the planted partition random graph model, by constructing a recursive algorithm using the second eigenvectors in order to learn the planted partitions. The correctness of our algorithm is not based on the ratio-cut interpretation of the second eigenvector, but exploits instead the stability of the eigenvector...
متن کاملGraph Partitioning Algorithms with Applications to Scientific Computing Graph Partitioning Algorithms
Identifying the parallelism in a problem by partitioning its data and tasks among the processors of a parallel computer is a fundamental issue in parallel computing. This problem can be modeled as a graph partitioning problem in which the vertices of a graph are divided into a speciied number of subsets such that few edges join two vertices in diierent subsets. Several new graph partitioning al...
متن کاملInexact Matching of Large and Sparse Graphs Using Laplacian Eigenvectors
In this paper we propose an inexact spectral matching algorithm that embeds large graphs on a low-dimensional isometric space spanned by a set of eigenvectors of the graph Laplacian. Given two sets of eigenvectors that correspond to the smallest non-null eigenvalues of the Laplacian matrices of two graphs, we project each graph onto its eigenenvectors. We estimate the histograms of these one-di...
متن کاملTHE SPECTRAL DETERMINATION OF THE MULTICONE GRAPHS Kw ▽ C WITH RESPECT TO THEIR SIGNLESS LAPLACIAN SPECTRA
The main aim of this study is to characterize new classes of multicone graphs which are determined by their signless Laplacian spectra. A multicone graph is defined to be the join of a clique and a regular graph. Let C and K w denote the Clebsch graph and a complete graph on w vertices, respectively. In this paper, we show that the multicone graphs K w ▽C are determined by their signless ...
متن کاملSpectral Clustering by Recursive
In this paper, we analyze the second eigenvector technique of spectral partitioning on the planted partition random graph model, by constructing a recursive algorithm using the second eigenvectors in order to learn the planted partitions. The correctness of our algorithm is not based on the ratio-cut interpretation of the second eigenvector, but exploits instead the stability of the eigenvector...
متن کامل